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Abstract. Phytoplankton growth, and hence biomass responds to changing light and nutrient conditions in the near-surface

ocean. Although a wide variety of physiological photoacclimation models have been developed and tested against laboratory

results, their application and testing against oceanic observations remain limited. Hence the biogeochemical implications of

photoacclimation in combination with ocean circulation have yet to be fully explored. We compare modeled phytoplankton

biomass and primary production from a recently developed flexible phytoplankton functional type model (FlexPFT), which5

incorporates photoacclimation and variable carbon (C):nitrogen (N):chlorophyll (Chl) ratios, to that obtained with an inflexible

control model (InFlexPFT), which assumes fixed C:N:Chl ratios. We couple each plankton model with a 3-D eddy-resolving

ocean circulation model of the North Pacific and evaluate their respective performance versus observations of Chl, nutrients,

and primary production. These two models yield different horizontal and vertical distributions of Chl and primary production.

The FlexPFT reproduces observed subsurface Chl maxima, although it overestimates Chl concentrations. In the subtropical10

gyre, where light is sufficient, even at low nutrient concentrations, the FlexPFT yields faster growth rates, as well as high Chl

concentration and primary production in the subsurface layer. Compared to the FlexPFT, the InFlexPFT yields slower growth

rates, and lower Chl and primary production. In the subpolar gyre, the FlexPFT also predicts faster growth near the surface,

where light and nutrient conditions are most favorable. Compared to the InFlexPFT, the key differences that allow the FlexPFT

to better reproduce the observed patterns are its assumption of variable, rather than fixed, C:N:Chl ratios and inter-dependent,15

rather than strictly multiplicative, effects of light- and nutrient-limitation.
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1 Introduction

Marine phytoplankton carry out approximately half of global primary production (Field et al., 1998) and sustain the marine20

food web. Much effort has therefore been expended to understand and develop predictive models of phytoplankton growth

and associated marine ecosystem processes and biogeochemistry. Phytoplankton models have for decades been constructed by

combining various empirically-based formulations for different physiological processes, such as photosynthesis as a function

of irradiance, growth as a function of nutrient availability, and the regulation of chlorophyll (Chl) content and cellular compo-

sition, which is termed photoacclimation (e.g., Platt and Jassby, 1976; Droop, 1983; Geider et al., 1998; Baklouti et al., 2006).25

Various formulations have been derived from laboratory experiments and in-situ observations, typically for the response of a

single key process (e.g. nutrient uptake or growth rate) to one or a few key environmental variables (e.g., nutrient concentra-

tion, light intensity, temperature). Global ocean biogeochemical models require combining multiple processes with sufficient

generality to apply over a wide range of environmental conditions. This formidable challenge can be approached in various

ways, which are still debated (e.g., Flynn, 2003, 2010; Franks, 2009; Anderson, 2010; Smith et al., 2016).30

Most phytoplankton models as used in global ocean biogeochemical models (e.g., Follows et al., 2007; Totterdell, 2019), apply

the Monod equation (Monod, 1949) for phytoplankton growth as a function of ambient nutrient concentration and assume

fixed stoichiometry between carbon and nutrients in phytoplankton and organic matter (Redfield et al., 1963) for the sake

of computational efficiency and simplicity. However, the actual elemental composition of phytoplankton and organic matter35

varies depending on environmental conditions (e.g., Smith et al., 1992; Martiny et al., 2013; Garcia et al., 2018b; Liefer et al.,

2019). In general, phytoplankton can sustain relatively high growth rates even when nutrient uptake rates are severely substrate-

limited, by producing biomass containing less of whatever required elements are in short supply (Flynn, 2010). Phytoplankton

grow with carbon, C: nitrogen, N ratios higher than the Redfield ratio when N is limiting and lower than the Redfield ratio when

light is limiting (e.g., Goldman et al., 1979; Falkowski et al., 1985; Smith et al., 1992). The inability of the Monod equation40

to describe adequately laboratory experiments and in-situ observations for the dependence of growth rate on nutrient concen-

tration led to the development of the Droop quota model (Droop, 1968, 1983). The Droop quota model for growth explicitly

accounts for flexible stoichiometry by including independent state variables for carbon and nutrient biomasses with separate

functions for acquiring each element (Caperon, 1968; Droop, 1968). Because the flexible stoichiometry of phytoplankton links

phytoplankton growth to biogeochemical cycles, the model has been applied to 1-dimensional (1-D) and 3-dimensional (3-D)45

ocean biogeochemical models and proved useful to account for observations of the composition of phytoplankton and organic

matter (e.g., Moore et al., 2001; Vichi et al., 2007; Ayata et al., 2013; Ward et al., 2013). However, the application of such

detailed models at the global scale has been restricted by both practical considerations of their computational requirements and

scientific concerns about increased complexity (e.g., a greater number of parameters values and processes) relative to simpler

fixed stoichiometry models.50
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Recently, as a potential solution to this problem, Smith et al. (2016) derived a computationally efficient Instantaneous Accli-

mation (IA) approach, which represents flexible phytoplankton composition, similar to the Droop quota model, but without

introducing additional state variables for each element or pigment considered. This "Flexible Phytoplankton Functional Type"

(FlexPFT) model accounts for the adaptive response to changing light and nutrient conditions in terms of two trade-offs for55

allocation of intracellular response: (i) carbon versus nitrogen assimilation (Pahlow and Oschlies, 2013), and (ii) affinity for

nutrient versus maximum uptake rate (Pahlow, 2005; Smith et al., 2009). Smith et al. (2016) applied the FlexPFT model in a

0-D setup, and assessed its performance in terms of phytoplankton seasonality, including variable composition for changing

light and nutrient conditions, at two observation sites (Station K2, 47◦N, 160◦E, and Station S1, 30◦N, 145◦E) in the North

Pacific. Ward (2017) further tested this approach and suggested that it has promise for incorporating flexible stoichiometry60

into global ocean biogeochemical models. Kerimoglu et al. (2021) further assessed the performance of the IA approach, as

compared to the typical assumption of fixed stoichiometry, in an idealized setup capturing typical seasonal variations of en-

vironmental conditions in a 1-D water column, accounting for the coupling of phytoplankton growth and biogeochemistry

with physical transport by advection and diffusion. Anugerahanti et al. (2021) assessed the performance of the IA approach

favorably compared to a suite of models of differing complexity, based on comparisons of 1-D model performance against ex-65

tensive time-series observations from subtropical stations ALOHA (A Long term Oligotrophic Habitat Assessment, 22.45◦N,

158◦W) in the North Pacific and BATS (Bermuda Atlantic Time Series, 31.67◦N, 64.167◦W) in the North Atlantic. Masuda

et al. (2021) applied the FlexPFT model in a global 3-D setup and showed that it could reproduce the global distribution of

observed subsurface chlorophyll maxima (SCM). However, for 3-D applications, especially with global ocean biogeochemical

models and earth system models, the challenge remains to reproduce the large-scale ocean conditions with computational effi-70

ciency and minimal tuning of model parameters. In this context, only limited tests have so far been conducted against oceanic

observations. Here we explore the biogeochemical implications of the IA approach and the eco-physiological assumptions

underlying the FlexPFT model in combination with large-scale ocean circulation.

To evaluate the adaptive response of phytoplankton growth to the varying light and nutrient conditions across the North Pacific,75

we compare modeled phytoplankton biomass and production from a recently developed phytoplankton model (FlexPFT, Smith

et al., 2016), which incorporates photoacclimation and variable C:N:Chl, to that obtained with an inflexible control (InFlexPFT)

model, which is a typical Nitrate-Phytoplankton-Zooplankton-Detritus (NPZD) type model (Sasai et al., 2006, 2010, 2016) as-

suming fixed C:N:Chl ratios (fixed stoichiometry). We apply these two phytoplankton models (FlexPFT and InFlexPFT) in a

3-D eddy-resolving ocean circulation model of the North Pacific, namely the Ocean general circulation model For the Earth80

Simulator (OFES2, Sasaki et al., 2020), to assess each model’s performance.
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2 Methods and Materials

2.1 The Coupled Physical-Biological Model

We used an eddy-resolving (1/10◦) coupled physical-biological model of the North Pacific, consisting of the OFES2 including85

sea-ice (Masumoto et al., 2004; Komori et al., 2005; Sasaki et al., 2020) coupled with a simple nitrogen-based NPZD pelagic

model (Sasai et al., 2006, 2010, 2016). The OFES2 domain extends from 20◦S in the South Pacific to 68◦N in the North Pacific

and from 100◦E to 70◦W. The model has 1/10◦ horizontal resolution with 105 vertical levels, from 5 m thickness at the surface

to 300 m thickness at the maximum depth of 7500 m. The physical fields were spun up under climatological forcing data (wind

stresses, heat flux, and freshwater flux) from the Japanese 55-year Reanalysis (JRA55-do) (Tsujino et al., 2018) and observed90

climatological fields of temperature and salinity (World Ocean Atlas 2009, WOA09) (Antonov et al., 2010; Locarnini et al.,

2010) without motion for 50 years. After 50 years of spin-up integration, the OFES2 was forced by 3-hourly JRA55-do from

1958 to 1979. The last day of 1979 is used for the initial physical fields for the simulation.

In the OFES2, an advection-diffusion equation, Eq. A1 (Appendix A), is used to calculate the evolution of four biological95

tracer concentrations (nitrogen-based units, mmol N m−3): Nitrogen, N , Phytoplankton, P , Zooplankton, Z, and Detritus, D.

The source and sink terms represent the biological activity (Eqs. A2 - A5) as described by Sasai et al. (2006, 2010, 2016). In

this study, to examine how the physiological flexibility of phytoplankton impacts modeled biomass and primary production

(PP), two phytoplankton models (FlexPFT and InFlexPFT), respectively, are applied for the phytoplankton growth term, µP ,

in the Eq. A2. The remaining biological activity equations and biological parameters (e.g., Grazing, Mortalities of P and Z,100

and Decomposition of D) are the same for both models (Appendix A). The initial nitrogen N (mmol N m−3) field is taken

from the WOA09 (Garcia et al., 2010). The initial phytoplankton and zooplankton concentrations are set to 0.2 mmol N m−3

at the sea surface, decreasing exponentially with an e-folding scale depth of 100 m. Detritus is initialized to 0.1 mmol N m−3

everywhere. Two NPZD models are incorporated after the last day of 1979 of the OFES2. The two coupled physical-biological

models are forced by 3-hourly JRA55-do from 1980 to 2019.105

2.2 Formulations of Phytoplankton Growth

Here, we briefly describe the two phytoplankton growth rate equations, FlexPFT and InFlexPFT, used in this study, which

appear in the first term of the right-hand side, µP , in Eq. A2. In both models, phytoplankton growth rate, µ (day−1), depends

on irradiance, I , which is the intensity of photosynthetically active radiation calculated from daily mean shortwave radiation110

(W m−3) of JRA55-do, nitrogen, N (mmol N m−3), and temperature, T (◦C). N and T are used from the coupled physical-

biological models’ output. The FlexPFT growth rate, µFlex(N,I,T ) (day−1) (Smith et al., 2016) is:

µFlex(N,I,T ) = µmax

(
1− Qs

Q
− fV

)
S(I,T )F (T ) (1)
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where µmax is the potential maximum growth rate (day−1), Qs is the structural minimum cell quota (mol N (mol C)−1) given

as a fixed parameter (= Q0/2, where Q0(= 0.039) is the minimum cell quota, Edwards et al., 2012), Q is the nitrogen cell115

quota, i.e. the intracellular N content per unit carbon biomass (mol N (mol C)−1) as a function of I , N , and T , and fV is the

fractional allocation of intracellular resources to nutrient uptake (dimensionless) as defined by Pahlow et al. (2013). The cell

quota, Q, is:

Q = Qs


1 +

√√√√1 +

[
Qs

(
µFlex(I,T )
V̂ N (N,T )

+ ζN

)]−1

 (2)

where µFlex(I,T )(= µmaxS(I,T )F (T )) is growth rate as a function of µmax, I , and T , V̂ N (N,T ) is potential nutrient uptake120

rate, and ζN is the energetic respiratory cost of assimilating inorganic nitrogen (0.6 mol C (mol N)−1, Pahlow and Oschlies,

2013). The potential nutrient uptake rate, V̂ N (N,T ), is:

V̂ N (N,T ) =
V̂0N

N +
(

V̂0

Â0

)
+ 2
√(

V̂0N

Â0

) (3)

where V̂0 and Â0 are the potential maximum uptake rate for N (day−1) and the potential maximum affinity for N (m3 (mmol

N)−1 day−1). The fractional allocation of intracellular resources to nutrient uptake, fV , as defined by Pahlow et al. (2013) is:125

fV =
µFlex(I,T )
V̂ N (N,T )


−1 +

√√√√1 +

[
Qs

(
µFlex(I,T )
V̂ N (N,T )

+ ζN

)]−1

 (4)

S(I,T ) specifies the dependence on I (Pahlow et al., 2013), and F (T ) is Arrhenius-type temperature dependence. S(I,T ) and

F (T ) are defined as, respectively:

S(I,T ) = 1− exp

{
−αθ̂I

µmaxF (T )

}
(5)

F (T ) = exp

{−Ea

R

[
1

T + 298
− 1

Tref + 298

]}
(6)130

here α is the Chl-specific initial slope of growth versus light intensity (dimensionless), and θ̂ is the Chl:C ratio (g chl (mol

C)−1) of the chloroplast, as described by Pahlow et al. (2013). Ea is the activation energy (4.8 × 104 J mol−1), R is the gas

constant (8.3145 J (mol K)−1), and Tref is the reference temperature (taken as 20◦C).
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The InFlexPFT for growth rate, µInFlex(N,I,T ) (day−1), is based on the Optimal Uptake kinetics equation (Smith et al.,135

2009):

µInFlex(N,I,T ) = µmax


 N

N +
(

V̂0

Â0

)
+ 2
√

V̂0N

Â0


S(I,T )F (T ) (7)

where V̂0 is the potential maximum uptake rate for N (day−1), and Â0 is the potential maximum affinity for N (m3 (mmol

N)−1 day−1), following the Optimal Uptake equation (Smith et al., 2009, 2010). Compared to the Monod equation for growth

as a function of ambient nutrient concentration, as typically applied in fixed composition models, this equation yields a similar140

response, but with a slightly flatter shape (Smith et al., 2009). Its use here ensures that the inflexible control model has the same

nutrient uptake response as the FlexPFT, so that the only differences between the two models are the trade-off between light and

nutrient acquisition (fV ) and the variable Chl:C ratios, which are only included in the FlexPFT. In the InFlexPFT the Chl:C

ratio, which appears in the light limitation term S(I,T ) (Eq. 5), is set to a constant value (θ̂ = 0.6). The same temperature

dependence, F (T ), is assumed in both models. Parameter values (Table 1) used in Eqs. 1 to 7 for the phytoplankton growth145

rate were tuned, separately for each coupled model, to reproduce the seasonal variability of N , and Chl in the near-surface of

North Pacific.

Compared to the InFlexPFT control, the FlexPFT model yields different growth rates because it instantaneously optimizes both

the allocation factor, fV , and the Chl:C ratio of the chloroplast, θ̂, which appears in the light limitation term, S(I,T ) (Eq. 5).150

Therefore, it is possible to understand the modeled patterns of phytoplankton biomass and production over the North Pacific by

comparing the expressions for growth rate, µ as a function of I , N , and T for each model, respectively. Results are presented

for simulated years 2000 to 2019. For the FlexPFT, the Chl concentration (mg m−3) is the phytoplankton concentration, P

(mmol N m−3),× θ̂/Q, and Primary Production, PP (mgC m−3 day−1), is µFlexP (Eq. 1)× the variable C:N ratio (1/Q) (Eq.

2 and Smith et al., 2016). In the InFlexPFT, Chl concentration is P × the constant Chl:N ratio (1.59 g Chl (mol N)−1), and PP155

is µInFlexP (Eq. 7) × the fixed C:N ratio (Redfield ratio = 106:16 mol C (mol N)−1).

2.3 Observational Data

Model results were compared with in-situ observations and satellite data (Chl, nitrate, and temperature). Sea surface Chl satel-

lite imagery is derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) - Aqua (https://oceancolor.gsfc.nasa.gov),

using the seasonal climatological data of Level-3 global browser. Ship observed Chl data along the two sections (north-south160

and east-west) in the North Pacific are available from the websites of the Japan Meteorological Agency, JMA (https://www.data.jma.go.jp),

and Japan Oceanographic Data Center, JODC (https://www.jodc.go.jp), respectively. Along the north-south section (165◦E)

in the western North Pacific, JMA research vessels have observed regularly from 2005 to the present. Along the east-west

section (around 35◦N) in the central North Pacific, observations were conducted from 2002 to 2003, summer, and pub-

lished by the JODC. Seasonal climatological nitrate and temperature distributions are acquired from the World Ocean At-165
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las 2018 (WOA18) (Garcia et al., 2018a; Locarnini et al., 2018). The PP data sets are available at three time-series sta-

tions: Stations K2 (47◦N,160◦E) and S1 (30◦N,145◦E) in the western North Pacific, as implemented by the K2S1 project

(Matsumoto et al., 2014, 2016; Honda et al., 2017) (https://ebcrpa.jamstec.go.jp/k2s1/en/index.html), and Station ALOHA

(22.45◦N, 158◦W) in the central North Pacific as operated under the Hawaii Ocean Time series (HOT) program (Karl et al.,

1996, 2021) (https://hahana.soest.hawaii.edu/hot/).170

3 Results and Discussion

This section assesses the models’ performance and examines the impact of physiological flexibility on modeled Chl and PP

by comparing the results of two coupled physical-biological (FlexPFT and InFlexPFT) models against satellite imagery and

vertical profiles of in-situ observations. The eddy-resolving ocean circulation model (OFES2) has fine horizontal resolution

(1/10◦, about 10 km), and reproduces the western boundary current, Kuroshio, the observed variability in the Kuroshio Exten-175

sion region between the subtropical and subpolar gyres, mesoscale eddies, and upwelling events (e.g., Masumoto et al., 2004;

Sasai et al., 2010; Sasaki et al., 2020). These physical processes directly or indirectly affect the nutrient and light environments,

and biogeochemical processes (e.g., Oschiles, 2002; Gruber et al., 2011; Levy et al., 2014; Sasai et al., 2010, 2019), and are

important for supplying the nutrients needed by phytoplankton, especially in the coastal upwelling regions and the oligotrophic

subtropical gyre. Here we focus on the different assumptions about how phytoplankton growth rate depends on ambient ni-180

trogen concentration and light intensity. First, the reproducibility of seasonal and horizontal Chl distributions is described.

Next, we compare the results of the two coupled physical-biological models in terms of Chl and PP along two vertical transects

(north-south and east-west, respectively) in the North Pacific, and discuss the reasons for the differences. Finally, the difference

in PP as calculated by these two models over the North Pacific is also discussed.

3.1 Surface Chl Pattern185

The surface Chl distribution as simulated over the North Pacific by the two models is shown in Fig. 1, compared with MODIS-

Aqua imagery to assess the two models’ performance. Overall, the two models reproduce the climatological seasonal variations

of surface Chl pattern between the subtropical and subpolar gyres, as captured by the MODIS-Aqua imagery. In addition, both

models reproduce the boundary between the subtropical and subpolar gyres, its seasonal variations, and high concentration in

the coastal upwelling regions (California coast) as seen in the MODIS-Aqua imagery. Compared to the InFlexPFT, the FlexPFT190

model produces greater variations and steeper horizontal gradients of Chl concentration. Especially in the open ocean north of

30◦N, coastal upwelling regions off the western coast of North America, the Sea of Okhotsk, and the Bering Sea, the FlexPFT

produces higher surface Chl than the InFlexPFT, but underestimates Chl in the subtropical gyre (south of 30◦N). The FlexPFT

also reproduces greater seasonal variation of surface Chl in the subpolar gyre, similar to the pattern in the MODIS-Aqua

imagery. On the other hand, in the subtropical gyre, the InFlexPFT is more similar to the MODIS-Aqua imagery. These differ-195

ences in the spatial and seasonal distributions of surface Chl result from the different phytoplankton growth rate equations, and

especially the difference between the FlexPFT’s variable Chl:C ratio (photoacclimation) versus the fixed ratio assumed in the
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InFlexPFT.

3.2 Vertical Distributions of Chl and Primary Production200

The limited data available from observations made by research vessels do capture key spatial and temporal distributions. As

a characteristic vertical profile, the SCM varies seasonally and across ocean regions (Cullen, 1982), driven by different light

attenuation levels and nutricline depths. It is impossible to capture the vertical profiles of Chl with satellite observations, and it

is therefore important to verify the SCM field reproduced by the model using in-situ observations (e.g., Shulenberger and Reid,

1981; Furuya, 1990). Using a 3-D biogeochemical ocean model coupled with the same FlexPFT model, Masuda et al. (2021)205

showed that the observed global scale SCM distribution can be reproduced by incorporating photoacclimation in response to

varying nutrient and light conditions. Here, the reproducibility of the vertical distribution of Chl for each model is discussed

along two observation lines over the North Pacific: a north-south section along 165◦E in Fig. 2, and an east-west section around

35◦N in Fig. 3. In particular, we focus on the SCM formed in summer, and discuss the effects of different assumptions about

how phytoplankton growth rate (Eqs. 1 and 7) depends on N concentration and light intensity, I , as well as their effects in210

combination with temperature, T (Figs. 4, 5, 6, and 7).

JMA research vessels have made observations on the north-south line along 165◦E regularly since 1997, with good seasonal

coverage. The best data coverage for vertical Chl profiles is available for the summer of 2006. The observed SCM (> 0.1 mg

m−3) depth varies from 50 m near the equator to 150 m in subtropical regions, and the FlexPFT clearly reproduces the observed215

pattern of SCM near the nutricline along the 165◦E line (Fig. 2), with simulated values close to the observed SCM (Figs. 2a

and 2c). However, the FlexPFT underestimates near-surface Chl. By contrast, the InFlexPFT (Fig. 2b) cannot reproduce the

observed SCM even though its modeled distributions of N and T are similar to the corresponding observations (Figs. 2d, 2e,

2f, 2g, and 2h). The FlexPFT, which accounts for photoacclimation, reproduces the observed vertical Chl distributions much

better than the InFlexPFT (Eqs. 1 and 7).220

The vertical distribution of Chl also varies with longitude along the east-west transect around the boundary (35◦N) between

the subpolar and subtropical gyres (Fig. 3). The limited JODC Chl observations (Summer, 2001-2002) span the east and west

of the North Pacific. The observed SCM (> 0.1 mg m−3) appears between 50 and 150 m depth and deepens to the west (Fig.

3a), following the distribution of nutricline depths (Fig. 3d). Compared to the north-south transect, here the near-surface T225

gradient is not as steep (Figs. 2 and 3), with T increasing from the center to the east and west (Fig. 3g). The model reproduces

the observed T distribution, and modeled N distribution is similar to the observed data (Figs. 3e, 3f, and 3h). The FlexPFT

clearly reproduces the observed SCM around the nutricline depth (Figs. 3c and 3f) from east to west, whereas the InFlex does

not (Fig. 3b). On the west side, both models overestimate the nutricline depth, and the FlexPFT underestimates the observed

Chl (Figs. 3a and 3c) and N (Figs. 3d and 3f).230
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To clarify the mechanistic reasons for differences in the vertical distributions of Chl between the two models (Figs. 2 and 3),

the vertical distributions of models’ PP (mg C m−3), and related phytoplankton growth rate (day−1) from Eqs. 1 and 7, and the

variable C:N ratio (reciprocal of the N quota of phytoplankton carbon ratio, 1/Q) in the FlexPFT, are shown in Figs. 4 and 5.

The PP was calculated from the phytoplankton growth rate and the C:N ratio, which for the FlexPFT is variable (Figs. 4e and235

5e) whereas it is constant for the InFlexPFT. Both models predict high PP near the surface in the subpolar regions along 165◦E,

with minimal PP near the bottom of the euphotic layer, which is close to 100 m depth (Figs. 4a and 4b). Overall, compared to

the InFlexPFT, the FlexPFT produces greater PP, with profiles extending deeper into the subsurface (100 m depth) to the south

of 30◦N. Both models produce fast growth rates in the subpolar surface layers and the subtropical subsurface layers (Figs. 4c

and 4d). Especially in the subtropical subsurface layers, the FlexPFT predicts much faster growth than the InFlexPFT, and this240

difference in phytoplankton growth rate is reflected in the vertical distributions of Chl (Figs. 2b and 2c) and PP (Figs. 4a and

4b). The variable C:N ratio in the FlexPFT (Fig. 4e) also contributes substantially to its greater PP values (Fig. 4d), compared

to the constant C:N ratio in the InFlexPFT (Fig. 4c). In Fig. 4e, the C:N ratio in the FlexPFT is high (> 20) near the surface

around the equator and subtropical regions, and near the Redfield ratio (106:16 = 6.625) elsewhere in the subpolar region and

below the euphotic layer (below 100 m depth). Observed elemental ratios of phytoplankton and particulate organic matter in245

surface layers deviate substantially from the Redfield ratio (e.g., Garcia et al., 2018b; Liefer et al., 2019). Our results show

that, compared to the assumption of constant C:N:Chl ratios, as in the InFlexPFT, accounting explicitly for variable C:N ratios

and the acclimated growth response of phytoplankton, as in the FlexPFT, yields substantially better reproduction of Chl and

PP profiles within the euphotic layer.

250

As in Fig. 4, the vertical distributions of modeled PP (mgC m−3), related phytoplankton growth rate (day−1) from Eqs. 1 and

7, and the variable C:N ratio in the FlexPFT in the east-west section are shown in Fig. 5. Both models predict high PP between

50 m and 100 m, with shallower distributions on the west side and deeper toward the east (Figs. 5a and 5b). Compared to the

InFlexPFT, the FlexPFT predicts higher PP, especially in the subsurface (near 100 m depth). Although both models predict

faster growth on the west side, decreasing towards the east, their patterns differ (Figs. 5c and 5d). In the InFlexPFT, the phyto-255

plankton growth rate is fastest near the surface and decreases with depth. On the other hand, the FlexPFT predicts increasing

growth rate with depth from the surface to intermediate depths. Both models produce subsurface maxima in PP (Figs. 5a and

5b), with a stronger pattern for the FlexPFT model. The FlexPFT predicts an even stronger subsurface maximum in the vertical

distribution of Chl (Fig. 3c). This results from the FlexPFT’s combination of photoacclimation and variable C:N ratio, which is

consistently high (> 10) in the euphotic layer (0 - 100 m) (Fig. 5e). Below the euphotic layer and to the east side, the FlexPFT’s260

C:N ratio approaches the Redfield ratio (106:16 = 6.625), and therefore the modeled Chl and PP differ less between the two

models.

To examine the inter-dependent impacts of N concentration and light intensity, I on the phytoplankton growth rate in the

FlexPFT, as compared with their simple multiplicative dependencies in the InFlexPFT, Figs. 6 and 7 show scatter diagrams of265

modeled phytoplankton growth rate and variable C:N ratio (1/Q) versus N concentration (mmol N m−3) at the three locations
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along 165◦E in Fig. 4 and around 35◦N in Fig. 5. Compared to the InFlexPFT, the FlexPFT maintains faster growth as either

light or nutrient becomes limiting everywhere. The phytoplankton growth rate also depends on temperature, T (Eqs. 1 and 7),

as shown by colors. In general, I and T both depend on latitude, and both decrease with increasing depth. At 25◦N latitude

(Figs. 6a and 6d), in the subtropical gyre, both models predict phytoplankton growth rates exceeding 0.2 (day−1) near the270

surface, despite the low N concentrations (< 0.1 mmol N m−3). Compared to the InFlexPFT, the FlexPFT maintains faster

growth rates at the surface and 50 m because it dynamically allocates intracellular resources to cope with variations in N

concentration and I (Smith et al., 2016, and Eq. 1). At the boundary between the subtropical and subpolar gyres, which lies

approximately between 35◦N and 40◦N latitude, the two models predict clearly different patterns of phytoplankton growth rate

compared to those at 25◦N (Figs. 6b, 6c, 6e, and 6f). At the gyre boundary and in the subarctic, both models tend to produce275

faster growth rates at 50 m, where the availability of light and nutrients is better balanced to support phytoplankton growth,

compared to the surface and 100 m depth. Compared to temperature, nutrient- and light-limitation exert greater control over

the modeled growth rates with both models, but more so for the FlexPFT. Nutrient limitation is the strongest determinant of

growth rates at the surface and intermediate (50 m) depth, whereas light limitation strongly suppresses growth rates (and their

range of variability) at 100 m depth.280

Similar to Fig. 6, Fig. 7 shows modeled phytoplankton growth rates at three selected locations along the 35◦N latitude transect

(Fig. 5). The two locations (160◦E, 36◦N, and 170◦E, 34◦N) on the west side of the North Pacific are close to (165◦E, 35◦N)

in Fig. 6, and have similar characteristics. At these locations, near the boundary of the subtropical and subpolar gyres, the

nutricline depth is shallower than on the eastern side. The InFlexPFT at the surface and 50 m depth shows the two curves285

of phytoplankton growth rate depending on the N concentration, I , and T (Figs. 7a and 7b) similar to Fig. 6b. Again, the

InFlexPFT predicts the fastest growth rates at the highest T , despite low N concentrations. On the other hand, the FlexPFT’s

growth rates are more clearly related to ambient N concentration with a less apparent relationship to T , despite assuming

the same T dependence in both models (Figs. 7d and 7e). As in Fig. 6, compared to the InFlexPFT, the FlexPFT predicts

faster phytoplankton growth rates, with maximal growth at intermediate N concentrations (despite lower T compared to the290

surface), and wider variation of growth rate. At the eastern-most location (170◦W, 30◦N) shown in the right-most column of

Figs. 7c and 7f, the patterns are more similar to the subtropical area shown in the left-most column of Figs. 6a and 6d, albeit

with somewhat greater variability of growth rate for both models near the surface, where temperatures are high and nutrients

scarce. As at the subtropical location (25◦N latitude) shown in the left-most column of Fig. 6, at this location the InFlexPFT

also exhibits a stronger apparent temperature sensitivity (hence a wider range of growth rates) than the FlexPFT, but here only295

near the surface. Neither model shows a strong apparent relationship between growth rate and N concentration at this location,

indicating which seems to indicate that light, nutrients, and temperature all substantially limit the growth here.

Compared to the InFlexPFT, the FlexPFT produces higher PP because its variable C:N ratio substantially exceeds the Redfield

ratio (106:16 = 6.625), with a consistent increase in C:N ratio from intermediate depths to the surface everywhere (Figs. 6 and300

7). Where the phytoplankton growth rate reaches maximal values at 35◦N and 40◦N, the C:N ratios are between 10 and 15

10

https://doi.org/10.5194/egusphere-2022-91
Preprint. Discussion started: 4 April 2022
c© Author(s) 2022. CC BY 4.0 License.



(Figs. 6h, 6i, 7g, and 7h), which enhances PP (Figs. 4b and 5b). Along the east-west transect as well (Fig. 7), the FlexPFT

again predicts maximal C:N ratios near the surface, where nutrient concentrations are lowest and light (and temperature) levels

are highest, with a similar range of C:N ratios as along the north-south transect (Fig. 6). On the west side, the C:N ratio in

the FlexPFT (Figs. 7g and 7h) exceeds the Redfield ratio, except below the euphotic layer, and growth rates are maximal at305

intermediate nutrient concentrations and light intensities. On the other hand, on the east side, where ambient nutrient concen-

trations are consistently low, despite the high C:N ratio in the FlexPFT (Fig. 7i), modeled growth rates differ little between the

two models.

Overall, at the surface and 50 m depth, the modeled patterns of growth rate versus N concentration are more clearly sepa-310

rated with the FlexPFT model, which produces a steeper and more consistent increase in growth rate from low to intermediate

N concentrations, compared to the InFlexPFT. These variations in the locally realized maximum growth rate result from the

FlexPFT’s growth optimization scheme, which re-allocates intracellular resources, resulting in an inter-dependent response

to I and N availability (Fig. 3 of Smith et al., 2016, and Eq. 1). By contrast, the InFlexPFT’s simple multiplicative depen-

dencies on I and N concentration result in a steeper decrease in growth rate as either resource becomes limiting. Despite the315

assumption of the same inherent T sensitivity for both models, the optimal resource allocation thus results in a weaker apparent

relationship between modeled growth rates and ambient T in the FlexPFT model, which predicts the fastest growth rates at

intermediate N concentrations despite lower T than at the surface. By contrast, the InFlexPFT model, because of its weaker

dependence on nutrient concentration and light, predicts the fastest growth rates at the highest temperatures, with a stronger

apparent relationship between growth rate and ambient temperature.320

3.3 Primary Production

The vertical distribution of PP differs along the two transect lines (north-south and east-west, respectively) (Figs. 4 and 5). To

investigate the models’ PP variations within the euphotic layer, Fig. 8 shows the seasonal variations of vertically integrated

PP from the surface to 100 m depth for the two models. The InFlexPFT produces weak seasonality for PP (Figs. 8a, 8b, 8c,325

and 8d), with maximal values in spring (> 800 mg C m−2 day−1) at the boundary between the subtropical and subpolar gyres

(Fig.8b), because the spring bloom occurs both horizontally and vertically (e.g., Fig. 1f). Along the east-west transect, from

30◦N to 40◦N, PP varies with N concentration, which is high on the west side and low on the east side (Figs. 3d, 3e, and 3f).

In summer and fall, when N concentration in the subtropical gyre decreases in the euphotic layer, even where light intensity,

I , is sufficient, N availability limits the phytoplankton growth rate (Eq. 7), so that PP does not increase (Figs. 8c and 8d). On330

the other hand, in the subpolar gyre, the PP in winter, summer, and fall increase with N (Fig. 8a). In the coastal upwelling

regions, N supplied from below the euphotic layer sustains higher PP compared to the open ocean. The FlexPFT predicts wider

seasonal variations of PP across the North Pacific (Figs. 8e, 8f, 8g, and 8h), which are especially noticeable at the boundary

between the subtropical and subpolar gyres, along the Kuroshio Current flowing south of Japan, and in the coastal upwelling

region off California. The FlexPFT’s springtime PP reaches twice (> 1600 mg C m−2 day−1) that of the InFlexPFT (Figs. 8b335
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and 8f). In the subtropical gyre, where the light intensity in the euphotic layer is sufficient for phytoplankton growth (Eq. 1),

N concentration in winter is higher than in summer and fall, and as a result, PP values are relatively high, although still lower

than during spring (Fig. 8e). In the subpolar gyre, where N concentrations are high, as the light environment improves from

winter to summer, PP increases within the euphotic layer (Figs. 8g and 8h). In the coastal upwelling regions and the Kuroshio

Extension, the FlexPFT, because of its optimal resource allocation, predicts much greater PP than the InFlexPFT. These spa-340

tial and seasonal differences in modeled patterns result from the different underlying assumptions about how phytoplankton

respond to changing conditions. As found in previous studies (Anugerahanti et al., 2021; Kerimoglu et al., 2021; Masuda et al.,

2021), our results show that photoacclimation and variable C:N:Chl ratios, as represented by the FlexPFT, are important for

capturing observed distributions of PP and especially the SCM. For reproducing the latter, capturing the unimodal distribution

of Chl;C ratio over depth is particularly important (Chen and Smith, 2018; Kerimoglu et al., 2021).345

Fig. 9 shows a direct comparison of modeled and observed vertical profiles of PP, for three time-series stations in the North

Pacific: Station K2 in the western subpolar gyre, and Stations S1 and ALOHA in the western and eastern subtropical gyre,

respectively. At Station K2, the temporal variation of observed PP is most significant above 25 m depth, and less variable

below 25 m depth (Fig. 9a). Overall, compared to the FlexPFT, the InFlexPFT predicts less temporal variability of PP, except350

below 50 m depth at Station K2, where the InFlexPFT predicts faster growth than the FlexPFT (Figs. 4c and 4d). At Station S1,

the temporal variation of observed PP is greater above 50 m depth, with less variability below 50 m depth (Fig. 9b). Compared

to the subpolar gyre, in the subtropical gyre the highest PP occurs deeper, where light limitation is more substantial, which

suggests that PP could be enhanced by an increase in light levels despite the relatively low N concentrations. Compared to

the InFlexPFT, the FlexPFT shows greater temporal variation of PP above 75 m depth. This difference depends on whether355

the phytoplankton growth ratio calculated by the model can reflect the optimal N and light environment (using FlexPFT or

InFlexPFT). Unlike the two stations in the western North Pacific, at Station ALOHA, both models underestimate the observed

PP (Fig. 9c). The observed PP from the surface to 100 m depth is large, and PP near the surface is about the same as at the

western Station S1. The FlexPFT underestimates the mean PP, but the temporal variation is closer to the observed variability

than with the InFlexPFT. Overall, compared to the InFlexPFT, the FlexPFT agrees better with the observed PP profiles.360

The difference in phytoplankton growth rate between the two models is reflected in the spatiotemporal distribution of PP (Figs.

8, and 9), similar to Chl distribution (Figs. 1, 2, and 3). These differences are greatest in the boundary region between the sub-

poral and subtropical gyres, the subpolar gyre, and the coastal upwelling region. Also, the FlexPFT reproduces greater temporal

variations than the InFlexPFT, which is more consistent with the observed variability. These results indicate that the FlexPFT365

(which incorporates photoacclimation and variable C:N:Chl ratios) better captures seasonal changes within the euphotic layer

and near the nutricline than the InFlexPFT. Estimated primary production in the North Pacific basin (20◦N - 60◦N, 130◦E -

110◦W) from Fig. 8 with the FlexPFT is 5.0 - 5.6 PgC yr−1, and with the InFlexPFT is 2.3 - 2.5 PgC yr−1 over the simulated

period of 2000 - 2019, respectively, and the FlexPFT’s estimate is about twice that of the InFlexPFT. On the other hand, the

global primary production as estimated by the satellite data and global biogeochemical models ranges widely: from 38.8 - 42.1370
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PgC yr−1 over the period of 1998 - 2018 (Kulk et al., 2020) and from 38 - 79 PgC yr−1 (Carr et al., 2006). The FlexPFT’s

modeled PP for the North Pacific basin amounts to approximately 10% of the estimated global primary production.

4 Conclusions

We have investigated the adaptive response of phytoplankton growth to changing light, nutrient, and temperature conditions375

over the North Pacific using two physical-biological models. We compared modeled phytoplankton biomass and primary pro-

duction from a recently developed phytoplankton model, FlexPFT (Smith et al., 2016), which incorporates photoacclimation

and variable C:N:Chl ratios for changing light and nutrient conditions, and the InFlexPFT control, which lacks photoacclima-

tion and assumes constant C:N:Chl ratios (fixed stoichiometry). Both models reproduce broad features of the climatological

seasonal variations of surface Chl across the North Pacific, as captured by MODIS-Aqua imagery (Fig.1). In terms of contrast380

between the subtropical and subpolar gyres, compared to the InFlexPFT, the FlexPFT produces greater variations in modeled

surface Chl. Vertical profiles of modeled Chl also differ between the two models, with the FlexPFT reproducing better the

observed SCM near the nutricline depth along 165◦E (north-south section, Fig. 2) and around 35◦N (east-west section, Fig.

3). In contrast to the FlexPFT, the InFlexPFT cannot reproduce the observed SCM even though the N distributions in the two

models are similar. Compared to the InFlexPFT, the inclusion of photoacclimation and variable C:N:Chl ratios in the FlexPFT385

yields a more apparent separation of the limiting effects of light, nutrients, and temperature, which reproduces substantially

better the observed Chl and PP distributions.

In both models, phytoplankton growth rate depends on the light intensity, nutrient concentration, and temperature (Eqs. 1 and

7 in Section 2.2), but the different functional forms of the light and nutrient dependencies in the two models produce sub-390

stantially different distributions of Chl and PP. In the FlexPFT, the optimization of phytoplankton growth rate subject to the

trade-off between light and nutrient acquisition yields an inter-dependent response to light and nutrient limitation. Compared

to the typical assumption of straightforward multiplicative effects of light and temperature, as in the InFlexPFT control, this

interdependent response allows more efficient growth as either light or nutrient becomes limiting. The FlexPFT also produces

greater C:N ratios than the InFlexPFT, especially near the surface (Figs. 4, 5, 6, and 7), and different horizontal and vertical Chl395

distributions, especially, in the boundary region between subtropical and subpolar gyres (Figs. 2, and 3). In the oligotrophic

subtropical gyre, the FlexPFT predicts slow growth near the surface where N concentration is very low, but its Chl concen-

tration is higher than that of InFlexPFT near the nutricline depth. Compared to the InFlexPFT, the FlexPFT predicts faster

growth even at low N concentration (< 0.1 mmol N m−3), and enhanced Chl concentration from the surface to intermediate

depths. In the boundary region, both light intensity and N concentration limit the growth rate. Compared to the InFlexPFT, the400

FlexPFT predicts maximal growth in the subsurface layer, rather than near the surface, and its variable Chl:C ratio allows better

reproduction of the observed SCM. In the subpolar gyre, the surface layer provides the optimum environment (light intensity

and N concentration) for phytoplankton growth in both models, but the FlexPFT produces higher Chl concentrations because
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of its variable Chl:C ratio (Figs. 4, 5, 6, and 7).

405

Our comparison of model results against summertime observations from the North Pacific revealed that, compared to the in-

flexible control model, the incorporation of photoacclimation and variable C:N:Chl ratios for changing light, nutrient, and

temperature conditions in the FlexPFT yields improved reproduction of observed Chl and primary production distributions in

the near-surface ocean. The IA assumption allowed computationally efficient modeling of flexible phytoplankton composition

and growth response in our regional model, which should be of even greater value for global-scale biogeochemical models.410

In the future we plan to assess model performance for other seasons and years, and to apply this approach in a global ocean

biogeochemical model in order to examine the response of phytoplankton biomass and primary production to climate change.

Data availability. The OFES2 coupled NPZD model simulations are available upon request. Observed data used in this study are available at

the following sites: The surface Chl satellite imagery of MODIS-Aqua data is available for download at https://oceancolor.gsfc.nasa.gov. The415

vertical observed Chl data are available for download at Japan Meteorological Agency (https://www.data.jma.go.jp) and Japan Oceanographic

Data Center (https://www.jodc.go.jp). WOA09 and WOA18 are available at https://www.ncei.noaa.gov (Antonov et al., 2010; Garcia et al.,

2010; Locarnini et al., 2010; Garcia et al., 2018a; Locarnini et al., 2018). The primary production data sets at Stations K2 and S1, and Station

ALOHA are available for download at https://ebcrpa.jamstec.go.jp/k2s1/en/index.html (Matsumoto et al., 2014, 2016; Honda et al., 2017)

and https://hahana.soest.hawaii.edu/hot/ (Karl et al., 1996, 2021), respectively.420

Appendix A: NPZD model

The NPZD model in the OFES2 is defined as nitrogen, N , phytoplankton, P , zooplankton, Z, and detritus, D, based on Sasai

et al. (2006, 2010, 2016). The evolution of biological tracer concentration, Bi, is governed by an advective-diffusive-reactive

equation.

∂Bi

∂t
=−∇ · (uBi) +∇ · (k∇Bi) + sms(Bi) (A1)425

where u is velocity vector of OFES2, k is the lateral and vertical diffusion coefficients in the OFES2, and sms(Bi) is the

source-minus-sink (sms) term due to biological activity rate (mmol N m−3 day−1) in the NPZD model. For the individual

tracers (P , Z, D and N ), the sms terms are given by:

sms(P ) = µP − rP P − δP P 2−λµP −G(P )Z (A2)

sms(Z) = G(P )Z − (γ1− γ2)G(P )Z − (1− γ1)G(P )Z − δZZ2 (A3)430
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sms(D) = δP P 2 + (1− γ1)G(P )Z + δZZ2− δDD− ∂

∂z
(WsD) (A4)

sms(N) =−µP + rP P + λµP + (γ1− γ2)G(P )Z + δDD (A5)

where the five terms of the right-hand side in the sms(P ) are the phytoplankton growth, µ, the respiration of P (rP , 0.12

day−1, is the respiration rate for P ), the mortality of P (δP , 0.24 day−1, is the mortality rate for P ), the extracellular excretion

of P (λ, 0.135 (no dim.), is the extracellular excretion rate of P ), and the grazing of P by Z (G(P ) is the grazing rate equation435

of Sasai et al., 2016). In this study, we adopt two different formulations of phytoplankton growth (FlexPFT and InFlexPFT, see

Section 2.2), µ, to the first term of the right-hand side in the sms(P ) in Eq. A2. The four terms of sms(Z) are the grazing of

P by Z, the excretion of Z (γ1, 0.7 (no dim.), is the assimilation efficiency of Z, and γ2, 0.3 (no dim.), is the growth efficiency

of Z), the egestion of Z, and the mortality of Z (δZ , 0.12 day−1, is the mortality rate for Z). The six terms of sms(D) are the

mortality of P , the egestion of Z, the mortality of Z , the decomposition from D to N (δD, 0.3 day−1, is the decomposition440

rate from D to N ) and the sinking of D (Ws, 30 m day−1 upper 1000 m or 300 m day−1 below 1000 m, is sinking velocity).

The five terms of sms(N) are the phytoplankton growth, the respiration of P , the extracellular excretion of P , the excretion of

Z, and the decomposition from D to N . More details of biological parameters are described by Sasai et al. (2006, 2010, 2016).
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Figure 1. Climatological seasonal variations of surface Chl concentration (mg m−3) from (a) - (d) MODIS-Aqua imagery and (e) - (l) two

models. MODIS-Aqua imagery is averaged from 2003 to 2019 for each season. Two models are averaged from 2000 to 2019 for each season,

and show an average of 20 m from the surface layer. White circles and crosses in Fig. 1g show two observation lines (the circles are the

locations of the JMA data and the crosses are the locations of JODC data).
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Figure 2. Comparison of vertical distributions of (a) - (c) summer (June, July and August) Chl concentration (mg m−3), (d) - (f) summer N

concentration (mmol N m−3), and (g) - (h) summer T (◦C) along 165◦E (north-south section) in Fig. 1g (white circles). Fig. 2a shows in-situ

observation data from the summer of 2006 by the JMA research vessel. Figs. 2d and 2g are from the climatological summer of WOA18.

Figs. 2b, 2c, 2e, 2f, and 2h show the models’ average value for the summer of 2000 to 2019.

Figure 3. Same as for Fig. 2, but along the location of white crosses (east-west section) in Fig. 1g (white crosses). Fig. 3a shows in-situ

observation data collected by the JODC in the summer of 2001-2002.
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Figure 4. Comparison of vertical distributions of (a) - (b) summer primary production (mg C m−3 day−1), and (c) - (d) summer phytoplankton

growth rate (day−1) between two models, and (e) vertical distribution of summer C:N ratio in the FlexPFT along 165◦E (north-south section)

in Fig. 1g (white circles). These figures show the average value for the summer of 2000 to 2019.
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Figure 5. Same as for Fig. 4, but along the location of white crosses (east-west section) in Fig. 1g (white crosses).
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Figure 6. Monthly mean (a) - (f) phytoplankton growth rate (day−1) in summer of 2000-2019 in Figs. 4c and 4d versus summer monthly

mean N concentration (mmol N m−3) in Figs. 2e and 2f for each depth (circle is surface, cross is 50 m depth, and triangle is 100 m depth

in Figs. 4c and 4d) for each model, and summer monthly mean (g) - (i) C:N ratio versus summer monthly mean N concentration in Flex

model. The color for each figure represent the summer monthly mean T (◦C) in Fig.2h. Dashed line in Figs. 6g, 6h, and 6i present constant

C:N (106:16=6.625) ratio value.
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Figure 7. Monthly mean (a) - (f) growth rate (day−1) in summer of 2000-2019 in Figs. 5c and 5d versus summer monthly mean N concentra-

tion (mmol N m−3) in Figs. 3e and 3f for each depth (circle is surface, cross is 50 m depth, and triangle is 100 m depth in Figs. 5c and 5d) for

each model, and summer monthly mean (g) - (i) C:N ratio versus summer monthly mean N concentration in the FlexPFT model. The color

for each figure present summer monthly mean T (◦C) in Fig. 3h. Dashed line in Figs. 7g, 7h, and 7i present constant C:N (106:16=6.625)

ratio value.
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Figure 8. Climatological seasonal variations of vertical integrated (from surface to 100 m depth) primary production (mg C m−3 day−1)

from (a) - (d) the InFlexPFT, and (e) - (h) the FlexPFT. Two models are averaged from 2000 to 2019 for each season. Three stars in Fig. 8a

show the observed stations.
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Figure 9. Comparison of vertical primary production (mg C m−3 day−1) between observed station data and two models at (a) Station K2

(47◦N,160◦E), (b) Station S1 (30◦N, 145◦E), and (c) Station ALOAH (22.45◦N, 158◦W) in Fig. 8a. Observed Station K2 data is from

2010 to 2019, Station S1 is from 2010 to 2013, and Station ALOHA is from 2000 to 2019 (crosses). Two models show the mean primary

production of 2000-2019 (solid line), the maximum of 2000-2019 (dashed line), and the minimum of 2000-2019 (dotted line). Blue lines are

InFlexPFT and red lines are FlexPFT.
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Table 1. Parameter of FlexPFT and InFlexPFT models

Parameter Symbol FlexPFT InFlexPFT Unit

Potential maximum growth rate µmax 2.2 1.5 day−1

Chl-specific initial slop α 2.0 2.0 No dim.

Potential maximum uptake rate for N V̂0 1.0 1.0 day−1

Potential maximum affinity for N Â0 1.0 2.0 m3 (mmol N)−1 day−1
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